
SWORD: A Scalable Whole Program Race
Detector for Java

Yanze Li
Texas A&M University

yanzeli@tamu.edu

Bozhen Liu
Texas A&M University
april1989@tamu.edu

Jeff Huang
Texas A&M University

jeff@cse.tamu.edu

Abstract—We present the design and implementation of
SWORD, a scalable and fully automated static data race detector
for Java, implemented as a plugin in the Eclipse IDE. SWORD
is the first whole program race detector that can scale to millions
of lines of code in a few minutes while achieving good precision
in practice. The cornerstone of SWORD is a new algorithm
that judiciously combines points-to analysis and happens-before
analysis efficiently, without losing precision. We have evaluated
SWORD on an extensive collection of large-scale open source
Java projects. Our results show that SWORD detects more
races and reports fewer false positives than the state-of-art race
detector, RacerD. Moreover, SWORD requires no human effort
to annotate code regions as required by RacerD. SWORD also
displays comprehensive bug traces and racing pair information
on the GUI, which make debugging the races easier. A demo
video is available at https://youtu.be/XQ0CBy7mMaY.

Index Terms—Data Race Detection, Whole Program Analysis,
Static Analysis, IDE

I. INTRODUCTION

Concurrency bugs, especially data races, can be easily
introduced but hard to detect and fix, yet the demand for multi-
threaded programs is ever increasing with the development of
multi-core hardware. Developers need fast and reliable tools to
detect concurrency bugs. Most existing techniques, however,
are designed for the late phases of software development, e.g.,
testing and production. This often renders it more expensive
to fix a bug compared to detecting and fixing the bug in the
programming phase, because the developers’ memory of the
context for a bug may decrease with time.

We present SWORD, a Static Whole prOgram Race
Detector in the form of an Eclipse plugin. SWORD is inspired
by our prior work ECHO [1] and D4 [2], in which an
incremental pointer analysis and a static happens-before (SHB)
graph are proposed to detect data races incrementally. SWORD
focuses on detecting data races at the whole program scale,
thus it trims off the incremental analysis, and simplifies the
structure of the SHB graph based on typical race patterns. As a
result, SWORD detects data races in the IDE in a batch mode
and provides a more detailed display, e.g., showing complete
race traces in the GUI.

To make SWORD scalable and useful, we have solved
following the engineering challenges:

1) We implement a flexible parallel design for SHB con-
struction and race detection.

2) We avoid redundant storage and computation for the
whole detection by optimizing the SHB design and lever-
aging typical race patterns.

3) We provide a user-friendly GUI with comprehensive
traces for developers to utilize.

Despite the enormous body of existing race detection re-
search, there is a surprising lack of out-of-box static race
detectors open-sourced for developers in real-world projects.
For Java programs, we have known Chord [3] and RacerD
[4]. Chord is a project dated back to 2006 and is no longer
maintained. It is hard to compile and run it on current Java
projects. RacerD is a compositional race detector that relies
on developer annotations to detect bugs in code segments.
We evaluated both SWORD and RacerD, and found that
SWORD has comparable performance with RacerD for most
benchmarks but it provides more precise detection results at
the whole program level and requires no human effort. This
makes SWORD competitive for a whole program analysis at
the code review phase.

The source code of SWORD is publicly available at https:
//github.com/parasol-aser/SWORD

II. BACKGROUND

RacerD [4] is an industrial-strength static race detector
for Java programs developed by Facebook, and can scale to
millions of lines of code in a few minutes. Unlike most race
detectors analyzing a whole program, RacerD only partially
checks the source project. To achieve great scalability, devel-
opers of RacerD made the following design choices:

1) Do compositional analysis instead of whole program
analysis

2) Replace points-to analysis with an aggressive ownership
analysis [4].

3) Do not reason about the interleaving between threads.
The compositional design of RacerD also faces several

challenges. Since RacerD does not reason about thread inter-
leavings, it requires a lightweight annotation library to provide
extra information. Otherwise, it can miss real data races. For
projects without normative annotations, it requires extra human
effort to annotate. In principle, RacerD is neither sound nor
complete. Due to the lack of alias information, RacerD only
checks syntactically identical access paths, which makes it
unsound and may introduce many false negatives in the whole

https://youtu.be/XQ0CBy7mMaY
https://github.com/parasol-aser/SWORD
https://github.com/parasol-aser/SWORD


(a) Achitecture Overview (b) SWORD GUI Display

Fig. 1: Overview for SWORD’s Architecture and GUI

program. Due to the lack of a precise call graph, RacerD
may also report false positives containing infeasible memory
accesses that can never be reached by the program. In practice
false positives are especially distractive to developers from
fixing real bugs.

III. OVERVIEW

An overview of SWORD’s architecture design is shown in
Figure 1a. After users import their projects, SWORD starts
from an entry method (e.g., main). It traverses all the reachable
methods in the call graph in order to record the events in the
SHB graph. Then, SWORD checks all the shared memory
accesses to find if there exists any race. Users are allowed
to exclude certain libraries and define arbitrary entries to
customize the analysis.

SWORD visualizes the detected races in the IDE in a well-
organized way. Figure 1b shows two types of views provided
by SWORD for developers to review the results. The bottom
view shows the race relation between memory accesses. Its
left column shows all memory writes in reported races. After
clicking at each write access, the right column will display
all the reads and writes racing with the write we click. The
listed memory accesses can be expanded to view its full trace
to help developers analyze the bug. The top right view lists
all the data race pairs. In the source file editor, a bug icon is
also attached to each racy statement.

IV. IMPLEMENTATION

The implementation of SWORD is based on the Eclipse
IDE [5], WALA [6] and Akka [7]. SWORD takes the bytecode
or Eclipse AST as inputs, and uses WALA to transform the
inputs into the SSA form IR. The analysis contains three main
components: points-to analysis, SHB graph construction, and
race detection on the SHB graph.

TABLE I: SHB Graph Node Types

IR Statement Node Type

x = y.f read(y.f)
x.f = y write(x.f)
x = o.m(arg∗) ∀Oc ∈ pts(o) : call(Oc.m)
t.start() ∀Oc ∈ pts(t) : fork(Oc)→ start(Oc)
t.join() ∀Oc ∈ pts(t) : join(Oc)→ end(Oc)
synchronized(x) ∀Oc ∈ pts(o) : lock(Oc), unlock(Oc)

A. Points-to Analysis

In SWORD, we use 0-CFA in WALA to perform a context-,
flow-insensitive and field-sensitive on-the-fly points-to analy-
sis (PTA), so that we can obtain both call graph and pointer-
assignment graph (PAG) where each variable node associates
with a points-to set. The reason of choosing context-insensitive
analysis is that the PTA sometimes takes more time than race
detection when analyzing large programs. Even changing the
context to 1-call-site, which is usually insufficient to filter out
most false positives, makes the simplest test case 2X slower.
Considering such a large performance cost, the accuracy
improvement brought by context-sensitivity is relatively small.

B. SHB Graph Construction

The SHB graph is critical in SWORD. It augments the call
graph and points-to information in previous steps with directed
edges to indicate the happens-before relation between nodes.

The SHB graph is constructed by traversing each IR state-
ment sequentially following the call graph flows. Each IR is
converted to a node as listed in Table I. Nodes in the same
method are sequentially labeled with a unique id to show the
intra-method happens-before relations. In addition, since new
threads may be introduced by loops, we unroll loops twice to
fully consider all possible data races.

Theoretically, the SHB graph only contains subgraphs repre-
senting the abstract threads. Subgraphs are connected by edges
indicating the inter-thread happens-before relations. However,



repeated method calls can introduce duplicate nodes from the
same methods into subgraphs and make the SHB graph large.
This will significantly increase the storage overhead and make
our detection inefficient. To mitigate this issue, we represent
both methods and threads as subgraphs. Any call to a method
is translated to a happens-before edge from the invoke node
to its subgraph, and the subgraph is associated with a list
of tids to record the threads that has invoked this method.
Moreover, since the threads generated in a loop always have
the same structure in the SHB graph, we do not unroll those
loop but simply label them as threads created by loops. This
further simplifies the SHB graph and avoids some redundant
computations during the detection phase.

We refer our readers to [1] for a detailed description of the
SHB graph construction. The construction process is further
parallelized to speed up the tool.

C. Race Detection Engine

SWORD detects races in three steps: 1) Find shared abstract
objects; 2) Find all reads/writes that access the shared abstract
objects; 3) Detect data races by checking the lockset and
happens-before relation in the SHB graph.

To scale SWORD, we leverage a parallel design based on
Akka framework [7], which supports efficient message passing
and asynchronous communication. With Akka, we can utilize
the multi-core on single computer, or deploy the tool on remote
clusters. In our implementation, we construct a BugHub that
uses BalancingPool to dispatch tasks and manage the status
of all BugWorkers. BugWorkers then carry out each step to
detect data races.

V. EVALUATION

We evaluated the accuracy and performance of SWORD
by comparing with RacerD. Since RacerD only performs a
partial analysis by default, we ran two sets of tests for it.
First, we ran RacerD and SWORD directly on all bench-
marks and collected all classes traversed by SWORD. Then
we annotated all recorded classes using the @ThreadSafe
annotation, and re-ran RacerD on all annotated benchmarks.
After annotating, we made sure both tools achieve the exact
same code coverage. The testing environment is a 4-core 2.5
GHz Intel x64 Macbook Pro with 16GB RAM. All standard
and external libraries are excluded, because RacerD does not
consider libraries. The number of BugWorkers in SWORD was
set to 8. The benchmarks we use are collected from Dacapo
[8] and Petablox [9], which cover different sizes of real-world
Java programs.

Accuracy. The Alarms columns in Table II show the
reported race number of SWORD and RacerD. The soundness
of SWORD is guaranteed by PTA and SHB graph design.
In order to verify the accuracy for all benchmarks, we com-
pared SWORD’s reports with RacerD’s reports on annotated
benchmarks, because they had the same code coverage. we
manually checked all reported races in the first 4 benchmarks
and confirmed all extra alarms reported by RacerD were false
positives. The rest 3 large benchmarks all contain more than a

TABLE II: Performance and accuracy for SWORD and Rac-
erD on different benchmarks

RacerD SWORD
Program LOC Alarms∗ Runtime† Alarms Runtime

tsp 454 6/44 1.2s 46 1s
elevator 1088 1/52 2.8s 45 1s
weblech 1322 10/53 2s 13 1.4s

sor 7176 44/64 3.3s 8 1.1s
sunflow 24713 59/1632 10.3s 1150 135s
lusearch 48128 222/2786 25s 1420 13s
avrora 70057 79/4788 30s 27 74s

∗ # of alarms without annotations / # of alarms with annotations
†RacerD has similar performance with or without annotations

thousand alarms, therefore we checked them by sampling. We
categorized all reported races by their classes. For each class,
we randomly pick three alarms to check:

1) The alarm is reported by RacerD but not by SWORD;
2) The alarm is reported by SWORD but not by RacerD;
3) The alarm is reported by both tools.
After checking all the sample alarms, we conclude that, for

the first type of alarms, all of them are false positives. For the
second type, there exist some real races, which means RacerD
has false negatives. The last type of alarms consists of both
false positives and real races.

Fig. 2: A false positive reported by RacerD in the weblech
benchmark, due to not reasoning the thread interleaving.

Fig. 3: A false negative reported by RacerD in the sor
benchmark, due to the lack of points-to analysis.

We use two examples to explain the imprecision of RacerD.
Figure 2 is a code segment of weblech. Spider is a class
implementing Runnable, and assign itself to multiple threads
in the constructor. However, the readCheckpoint() will only
be called once in main before spider.start(), therefore there
is no concurrent access with the queue in this method. Since
RacerD does not reason about happens-before relation, read-
Checkpoint() is reported to be in a race.

Figure 3 is a simplified code piece from sor. Class
sor first row extends Thread. The Parameters s and e are
consecutive ranges (e.g., 1 to 5; 6 to 10). The static arrays
black and red in class Sor are assigned to local variables
black and red in sor first row. All threads perform array
accesses on black and red , therefore manipulating static
arrays black and red concurrently. The indexes of these array



accesses will overlap at j−1 and j+1. However, RacerD treats
black and red as thread local variables due to the missing
of precise pointer analysis. As a result, RacerD fail to detect
the real races on black on line 16 and red on line 17, no
matter it runs with or without annotations.

We can see that without annotation, RacerD can detect only
a very limited number of races, and it misses some known
real races due to its unsoundness. When fully annotated,
RacerD detects many more false positives than SWORD. For
benchmarks sor and avrora, a large portion of their source
code cannot be reached during execution, but RacerD still
reported many races in unreachable parts. SWORD is more
precise than RacerD because it traverses call graphs starting
from the program entry points only.

Performance. For small benchmarks, both tools manifest a
fast detection speed. When the programs grow large, RacerD
tends to have a better performance on average, because it
utilizes a cheap ownership analysis to replace PTA. This
design makes the performance of RacerD mainly depends on
program sizes and is not affected by complexity. In contrast,
SWORD performs a context-insensitive PTA, which is more
precise but relatively more expensive. Nevertheless, SWORD
can complete the detection within 3 minutes for all the
benchmarks. The performance of SWORD is disproportionate
to the program size. For example, sunflow has smaller program
size than lusearch, but it contains more abstract threads and
shared memory accesses, which require significantly more
computation (135s vs 13s) to determine the happes-before
relations and locksets.

Discussion. In general, both RacerD and SWORD are fast.
When targeting at some specific code segments, RacerD is
fairly handy, but SWORD is much more precise on whole
program scale. Moreover, SWORD provides a comprehen-
sive IDE integration for developers to debug the races. To
understand false positives in SWORD, we carefully studied
the weblech benchmark, and confirmed that 3 out of the 13
alarms are false positives. The main cause of false positives
is context-insensitivity. This can be mitigated by applying a
context-sensitive PTA or performing additional analysis based
on SWORD to further filter out those false alarms.

VI. RELATED WORK

Data races can be detected both statically and dynamically.
Dynamic analysis [10]–[13] can detect real bugs in the pro-
gram, but it is hard to reason about all possible interleaving
between threads. Static tools [3], [4], [14] usually provide high
code coverage along with many false positives.

Some other techniques [15]–[18] exploit multicore CPU to
speed up PTA using parallelism. These techniques can be
integrated with SWORD to further improve the performance.

VII. CONCLUSION AND FUTURE WORK

We have presented SWORD, a static whole program race
detector for Java. We evaluated SWORD with RacerD on
various open source projects, and found that SWORD can
reveal more real races with fewer false positives and also

have a comparable performance in most cases, therefore
making SWORD a competitive out-of-box whole program
race detector available. In the future, we plan to further
consider common data race patterns and leverage techniques
like selective context-sensitive PTA or a distributed system
design to make SWORD more precise and scalable. The
Eclipse JDT language server [19] is a Java language specific
implementation of the Language Server Protocol [20]. This
also makes it possible to deploy SWORD at remote servers to
utilize more powerful computation resources and to work for
different programming languages.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
valuable feedback on early drafts of this paper. This work was
supported by NSF awards CCF-1552935 and CNS-1617985.

REFERENCES

[1] S. Zhan and J. Huang, “Echo: instantaneous in situ race detection in
the ide,” in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2016, pp.
775–786.

[2] B. Liu and J. Huang, “D4: fast concurrency debugging with parallel
differential analysis,” in Proceedings of the 39th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. ACM,
2018, pp. 359–373.

[3] M. Naik, A. Aiken, and J. Whaley, Effective static race detection for
Java. ACM, 2006, vol. 41, no. 6.

[4] S. Blackshear, N. Gorogiannis, P. O’Hearn, and I. Sergey, “Racerd:
compositional static race detection,” Proceedings of the ACM on Pro-
gramming Languages, 2018.

[5] “Eclipse plugin development environment,” http://www.eclipse.org/pde/.
[6] “T. j. watson libraries for analysis (wala),” http://wala.sourceforge.net/.
[7] “Akka,” https://akka.io/docs.
[8] “Dacapo benchmarks,” http://www.dacapobench.org/.
[9] “Petablox,” http://petablox-project.github.io/index.html.

[10] C. Flanagan and S. N. Freund, “Fasttrack: efficient and precise dynamic
race detection,” in ACM Sigplan Notices, vol. 44, no. 6. ACM, 2009,
pp. 121–133.

[11] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A dynamic data race detector for multithreaded programs,”
ACM Transactions on Computer Systems (TOCS), vol. 15, no. 4, pp.
391–411, 1997.

[12] K. Sen, “Race directed random testing of concurrent programs,” ACM
Sigplan Notices, vol. 43, no. 6, pp. 11–21, 2008.

[13] K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: data race detec-
tion in practice,” in Proceedings of the workshop on binary instrumen-
tation and applications. ACM, 2009, pp. 62–71.

[14] J. W. Voung, R. Jhala, and S. Lerner, “Relay: static race detection on
millions of lines of code,” in Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering. ACM, 2007,
pp. 205–214.

[15] M. Edvinsson, J. Lundberg, and W. Löwe, “Parallel points-to analysis for
multi-core machines,” in Proceedings of the 6th International Confer-
ence on High Performance and Embedded Architectures and Compilers.
ACM, 2011, pp. 45–54.

[16] M. Méndez-Lojo, A. Mathew, and K. Pingali, “Parallel inclusion-based
points-to analysis,” in ACM Sigplan Notices, vol. 45, no. 10. ACM,
2010, pp. 428–443.

[17] S. Putta and R. Nasre, “Parallel replication-based points-to analysis,” in
International Conference on Compiler Construction. Springer, 2012,
pp. 61–80.

[18] Y. Su, D. Ye, and J. Xue, “Parallel pointer analysis with cfl-reachability,”
in 2014 43nd International Conference on Parallel Processing (ICPP).
IEEE, 2014, pp. 451–460.

[19] “Eclipse jdt language server,” https://github.com/eclipse/eclipse.jdt.ls.
[20] “Language server protocol,” https://microsoft.github.io/

language-server-protocol/.

http://www.eclipse.org/pde/
https://akka.io/docs
http://www.dacapobench.org/
http://petablox-project.github.io/index.html
https://github.com/eclipse/eclipse.jdt.ls
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/

	Introduction
	Background
	Overview
	Implementation
	Points-to Analysis
	SHB Graph Construction
	Race Detection Engine

	Evaluation
	Related Work
	Conclusion and Future Work
	References

